The High Energy X-Ray Probe (HEX-P) Probing the circum-nuclear environment in AGN down to extremely low luminosities

Peter Boorman¹, Francesca Civano², Daniel Stern³, Elias Kammoun⁴, James Aird^{5,6}, David Alexander⁷, Tonima Ananna⁸, David Ballantyne⁹, Mislav Baloković¹⁰, William Brandt¹¹, Murray Brightman¹, Chien-Ting Chen¹², Javier García¹, Brian Grefenstette¹, Ryan Hickox⁸, Kristin Madsen², Stefano Marchesi^{13,14}, Emanuele Nardini¹⁵, Ryan Pfeifle², Claudio Ricci^{16,17,18}, Guido Risaliti^{15,19}, Dominic Sicilian²⁰, Núria Torres-Albà¹⁴, Xiurui Zhao²¹ & the HEX-P Team

HEX-P will probe the dusty hearts of galaxies to reveal the complex structure of gas close to accreting supermassive black holes

The local census of AGN

(Left) simulated X-ray spectra from an AGN enshrouded by a clumpy gas obscurer, coloured by the column density of the gas clumps integrated along the line-of-sight.

(Center) the observed X-ray background spectrum (Gilli12), which is dominated by obscured AGN growth across cosmic time. However, little is known about the detailed structure and evolution of the circum-nuclear material within ~100 pc of AGN even in the closest sources (e.g., Annuar+20, Buchner+21)

(*Right*) A selection of physically-motivated model geometries for studying the obscuration surrounding growing supermassive black holes (for models, see Brightman+11, Paltani & Ricci17, Baloković+18, Tanimoto+19, Buchner+19, Buchner+21)

New insights into AGN growth

The X-ray spectrum above 10 keV depends strongly on the structure of the circum-nuclear material.

(Right) An inset from a set of simulated AGN at 15 Mpc (Annuar+20). The full set (right strip of poster) were simulated with unabsorbed luminosities $L_{2-10 \text{ keV}} = 10^{40.5} - 10^{42.5} \text{ erg s}^{-1} \text{ and } \nearrow$ two different covering factors. Both scenarios are distinguishable for all luminosities considered.

(Left) work led by Elias Kammoun $_{68\%}$ showcasing the high-energy cut-off constraints attainable for local (~100 Mpc) heavily obscured AGN $(N_{\rm H} = 10^{24} \, {\rm cm}^{-2}).$

Do you have ideas for how HEX-P would revolutionize your science? Get in touch!

hexp.future@gmail.com boorman@caltech.edu

hexp.org peterboorman.com

Prospects & next-generation synergies

(Left) Distance vs. unabsorbed X-ray luminosity for the most obscured AGN confirmed with NuSTAR. The dashed lines represent the same signal-to-noise cut in the 3-15 keV energy band for simulated heavily obscured AGN. With HEX-P, the bulk of the population will reach the same spectral quality as the brightest nearby heavily obscured AGN with NuSTAR.

Combined with next-generation multi-wavelength & gravitational wave facilities, HEX-P will study the dusty hearts of galaxies and enshrouded AGN, as well as the coevolution between supermassive black holes and their host galaxies across cosmic time.

¹California Institute of Technology, ²NASA Goddard Space Flight Center, ³Jet Propulsion Laboratory, ⁴IRAP, Université de Toulouse, ⁵Edinburgh University, ⁶Leicester University, ⁷Durham University, ⁸Dartmouth College, ⁹Georgia Institute of Technology, ¹⁰Yale University, ¹¹Pennslyvania State University, ¹²NASA Marshall Space Flight Center, ¹³INAF-Bologna, ¹⁴Clemson University, ¹⁵INAF-Arcetri, ¹⁶Universidad Diego Portales, ¹⁷Kavli Institute, Peking University, ¹⁸George Mason University, ¹⁹University of Florence, ²⁰Miami University, ²¹Harvard & Smithsonian