The High Energy X-Ray Probe (HEX-P) Resolving the nature of X-ray binaries, Sgr A^* flares and particle accelerators in the Galactic Center

Shifra Mandel¹, Kaya Mori¹, Arash Bodaghee², Benjamin Coughenour³, Jonathan Grindlay₄, JaeSub Hong₄, Roman Krivonos⁵, Ekaterina Kuznetsova⁵, Samaresh Mondal⁶, Melania Nynka⁷, Gabriele Ponti^{6,8}, John Tomsick³, Shuo Zhang⁹, Javier Garcia¹⁰, Brian Grefenstette¹⁰, Bret Lehmer¹¹, Kristin Madsen¹², Giovanni Stel^{6,13}, Daniel Stern¹⁴ & the HEX-P Team

Galactic Center (GC) science with HEX-P

As the next-generation X-ray observatory, HEX-P will boast

- an unprecedented broad energy range, combined with
- superb spatial resolution, and

Sgr A* X-ray flares: "hiccups" from the supermassive black hole

- Sgr A* emits X-ray flares due to particle acceleration around the supermassive BH
- Particle acceleration and emission mechanisms: Synchrotron or SSC? ^{1,2}
- HEX-P can constrain particle acceleration during flares by detecting **spectral cut-off** (see figure below)
- Statistical studies: Does the X-ray photon index evolve with time?³
- Multi-wavelength science with HEX-P, EHT, Gravity, etc. will constrain the SED evolution and time lags

- an effective area far superior to
- current facilities'.

These capabilities will allow us to detect, identify, and study various types of X-ray sources in the crowded Galactic center by constraining their spectral properties.

Fig 1. The effective area of HEX-P compared to current X-ray observatories.

Fig 5. Left: NuSTAR (green) and Chandra (red & black) spectra of a Sgr A* flare³. Right: simulated HEX-P 10x weaker flare; spectral cut-off at 30 keV.

Fig 6. Left: best-fit spectral index vs flux relation for Sgr A* flares³. Right: HEX-P will allow us to constrain the flux/photon index relation.

HEX-P will resolve sources in crowded regions, like the GC

The GC is home to many exotic X-ray point sources (Fig 3), like cataclysmic variables (CVs) and black hole (BH) & neutron star (NS) low-mass X-ray binaries (LMXBs).

- Chandra observatory: able to *resolve* individual point sources in the crowded GC region (above), but lacks the energy range required to constrain their spectra
- **NuSTAR**: broadband capabilities to measure *spectra* of different X-ray sources, but lacks the spatial resolution required to *resolve* point sources in the crowded GC
- **HEX-P**: both the **broadband energy** capabilities and **angular resolution** required to a) resolve individual GC X-ray sources, and b) measure their spectral properties

The Galactic Center: a cornucopia of energetic X-ray sources

Fig 3. Right: NuSTAR 10-40 keV image of the GC region (Hong et al. 2016). NuSTAR surveyed only 2/3 of the larger (2x0.8 deg) Chandra (Wang/Muno) GC field; stray-light background (SLB) contamination prevented observation of the remaining areas. HEX-P will not be susceptible to SLB, and will therefore be able to cover the entire GC region. Left: inset showing the central pc of the Galaxy. The bright PWN G359.95-0.04 dominates the hard X-ray emission and no other sources can be resolved.

GC PeVatrons: a new and exciting frontier

Fig 7. Simulations of HEX-P LET (red) and HET (blue & green) spectra demonstrate the ability of HEX-P to decipher the origin of high-energy X-rays from the giant GC molecular cloud Sgr B2. Possibilities include single- (top panel) or multiplecenter panel) scattering Compton

Differentiate between thermal & non-thermal sources \Rightarrow identify individual sources as LMXBs, CVs, or millisecond pulsars (MSPs)

- Fig 2. Left: Chandra (red), XMM-Newton (green) and NuSTAR (black) spectra of a CV candidate in the GC (~343 ks NuSTAR exposure; Hong et al. 2016). Right: simulated HEX-P LET (black) and HET (red) spectra of the same source (100 ks exposure) demonstrates HEX-P's ability to accurately measure and constrain M_{WD} in CVs.
- Accurate measurements of CV spectra (above) \Rightarrow determine well-constrained white dwarf masses (M_{WD})
- Significant implications for studies of galaxy evolution and gravitational wave events

Do you have ideas for how HEX-P would revolutionize your science? Get in touch!

and the PWN G359.95-0.04 are distinguishable, as are a number of other sources that are unresolved in the NuSTAR image (cf. Fig 3 above).

GC X-ray sources to probe with HEX-P Point sources:

- Quiescent **BH LMXBs** (non-thermal)
- **CVs** (thermal; the source of CHXE?)

inside the molecular cloud, or excitation by low-energy cosmic rays (bottom panel). Simulation exposure: 500 ks.

Molecular clouds:

- Imprints of past Sgr A* outbursts in X-ray reflection Compton hump
 - Fe fluorescence line; photo-absorption edge
- X-ray emission from cosmic-ray (CR) bombardment:
 - Low energy $CRs \Rightarrow$ non-thermal bremsstrahlung
 - High energy CRs \Rightarrow synchrotron radiation

X-ray filaments:

- More than two dozen radio filaments (i.e. bundled magnetic flux tubes) detected in the X-ray band ⁴
- Synchrotron hard X-ray emission \Rightarrow explore the spatial & energy distributions of TeV-PeV electrons in the GC
 - SED (radio/X-ray/TeV, in synergy with CTA):
 - B-field strength
 - Constrain electron energy distribution
 - High energy spectral cutoff \Rightarrow max electron energy

Particle accelerators in the GC:

- Supermassive black hole: Sgr A*
- Pulsar wind nebulae: G359.95-0.04, G0.9+0.1, G0.13-0.11
- Supernova remnants: Sgr A East, G1.9+0.3 (very young SNR; ideal for Titanium 44 line detection)

ss5018@columbia.edu

- **Pulsars** (source of GeV excess?)
- Sgr A* flares (particle acceleration and emission mechanisms)

Diffuse sources:

- **PWNe/SNRs/star clusters** (PeVatron candidates)
- **X-ray filaments** (probing TeV-PeV electrons) ightarrow
- Molecular clouds (cosmic ray distribution and/or reverberation of Sgr A* outbursts in the past)

• Star clusters: Arches, Quintuplet, nuclear star cluster

Fig 8. Left: Chandra GC image; arrow indicates filament G359.89-0.08, a.k.a. Sgr A-E (Johnston et al. 2009). Right: simulated HEX-P HET spectrum of the source extends past 100 keV.

¹Columbia University, New York, NY ²Georgia College & State University, Milledgeville, GA ³University of California, Berkeley, Berkeley, CA ⁴Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA ⁵Space Research Institute (IKI): Moscow, Russia ⁶INAF Observatorio Astronomico di Brera, Merate, Italy ⁷MIT, Cambridge, MA ⁸Max-Planck-Institut für extraterrestrische Physik, Garching, Germany ⁹Bard College, Annandale-on-Hudson, NY ¹⁰California Institute of Technology, Pasadena, CA ¹¹University of Arkansas, Fayetteville, Fayetteville, AR ¹²Goddard Space Flight Center, Greenbelt, MD ¹³University of Insubria, Como, Italy ¹⁴Jet Propulsion Laboratory, Pasadena, CA